
CS7642 Project 3 Report
Git hash - 3fa00be3a0c77fd397ab592346b762026e87447b

Abstract- The goal of this project is to develop a
multi-agent reinforcement learning algorithm for
Google Research’s football environment. Three
baseline teams have been provided, and a variety
of algorithms are tested to gauge their ability to
improve on certain aspects of the baseline teams.
It was found that the Ape-X DQN and PPO
algorithm, implemented using Ray’s RLlib library,
were most suitable for best returns. The Ape-X
algorithm in particular is analysed and compared
to the PPO baselines, with suggestions made on
how its results could be improved upon.

Introduction
The Google Research Football Environment is a
reinforcement learning (RL) environment where
agents are trained to play football (a.k.a. soccer) in
a physics-based 3D simulator and is designed to
provide support for multi-agent RL experiments [1].
Published research in this environment investigates
the use of reinforcement learning algorithms such
as IMPALA, PPO and APE-X DQN [1]. Additionally,
similar environments exist that utilise a multi-agent
approach, such as DeepMind’s MuJoCo [2].

Problem Definition
For this assignment, three baselines teams have
been provided, each trained using the Proximal
Policy Optimisation (PPO) Algorithm using Ray’s
RLlib library [3]. However, each one has been
trained using a different set of parameters. The
goal of this assignment is to implement another
algorithm/model that improves upon certain
aspects of the baseline teams.

The environment created is a 3v3 scaled-down
version of the original 11v11 implementation. The
agent implemented will take control of two outfield
players in the left team (attacking to the right),
where the goalkeeper is automatically controlled.
The opponent AI controls all three players in the
right team (attacking to the left).

The observation space for this environment is high-
dimensional and continuous and represented as a
43-dimensional vector. Additionally, the action
space is a discrete set of 19 actions. The reward
function is split into two categories; the score
reward and the checkpoint reward. If a team scores
a goal, it receives a +1 reward, while the opposition
receives a -1 reward. Additionally, up to an

additional 10 checkpoint rewards are provided if a
player in possession crosses distance checkpoints,
receiving a +0.1 reward for each checkpoint
crossed. The score and checkpoint rewards
combined are the “episode reward”.

Chosen Solution Strategies
The first strategy is to trial a variety of algorithms to
discover which one has the greatest potential to
beat the baseline. Given the computational and
time limitations, the algorithm had to meet the
following two criteria to be used for
evaluation/analysis later on. They are referred to as
the “target training criteria”, and use the following
custom metrics:

• win_percentage_episode_max- All baselines
were able to return a value of 1 for this metric
after 5 hours of wall-clock time (excluding the
rare outliers). Therefore, If the new model was
unable to achieve this trend, it was not
considered further.

• “win_episode_percentage_mean” & “episode
_reward_max”- these two are used in tandem.
For certain models, their average percentage of
episodes won plateaus, which may give an
impression that they’ve stopped learning,
however, this is not the case (as shown by
Baseline 3 in Figure 1). If this behaviour is
noticed for longer than 5 hours of wall-clock
time, then “episode _reward_max” is analysed.
If the agent is not scoring close to the max of 4.0
(i.e. 3.8 or higher), that means it may be
struggling to acquire its checkpoint rewards and
score, hence is not considered for evaluation.

This approach may be considered empirical and
therefore, not necessarily definitive. This is because
it is likely for a model to take several hours to
perform poorly at the metrics above but then learn
rapidly to outperform expectations (similar to
baseline 3). However, it is difficult to predict this in
training, hence the aforementioned time limits are
imposed in the “target training criteria”.
Furthermore, the wall-clock hours taken in training
are used as a threshold instead of timesteps taken
in the assessment because the algorithms have
different training rates (e.g. Ape-X can complete
over 2 million timesteps in an hour, whereas PPO
would complete 650,000).

As previously mentioned, Google’s Brain team
analysed three algorithms, PPO (Proximal Policy
Optimisation) [3], IMPALA (Importance-Weighted

Actor Learner Architecture) [4] and Ape-X DQN
(Distributed Prioritized Experience Replay) [5].
These three algorithms were selected for this
analysis, along with SAC (Soft Actor-Critic) [6],
deployed using Ray’s RLlib package, and were
trained and analysed based on the two “target
training criteria”.

Algorithms/ Models attempted
SAC (Soft Actor-Critic)
The algorithm consists of an actor-critic
architecture (similar to DQN) with separate policy
and value function networks. It also has an off-
policy formulation that enables the reuse of
previous data, and entropy maximisation to
encourage stability and exploration [6].
SAC was unable to pass the two target training
criteria since it failed to consistently win after 5
hours. Therefore, it was not evaluated any further.

IMPALA

This is a highly scalable algorithm that decouples
the acting and learning elements. A central learner
is provided with trajectories of experience from
individual workers. The RLlib implementation uses
DeepMind’s reference V-trace code [7]. IMPALA,
similar to SAC, was also unable to pass the target
training criteria, and hence was not evaluated
further.

PPO
Proximal Policy Optimization is an online policy
gradient algorithm that alternates between
sampling data through interaction with the
environment and optimizing a “surrogate”
objective function using stochastic gradient ascent
[3]. This is the algorithm chosen for all baselines and
lends itself well for use in multi-agent
environments. As shown by the baseline values,
PPO passed both the target training metrics and a
custom model is considered for further assessment.

APEX-DQN
DQNs use a multi-layer perceptron, rather than a Q-
table, to estimate the Q-values as state-action pairs
for the given state [8]. However, DQN showed a
poor training rate and was unable to pass the target
training criteria. Given that the number of workers
could not be increased to scale for the
environment, Ape-X DQN was selected instead.
Additionally, Ape-X also allows for faster training at
a comparable timestep efficiency [9]. In particular,
Ape-X extends the prioritized experience replay
memory to the distributed setting to enable higher

scalability, done via multiple actors. The learner
then samples from this memory, updating the
network and the priorities of the experience.

Experiments and Analysis
Initial Parameters
Certain parameters remained constant from their
baseline implementations to all the custom models
implement. These include:

• “rollout_fragment_length”- set to 100.

• “batch_mode”- set to “truncate_episodes”, so
each call to “sample()” will return a batch of
length “rollout_fragment_length” at most.

• “model”- all are set to “fcnet”, and consist of 2
hidden layers.

• “train_batch_size”- set to 2800

Custom models were created using PPO and Ape-X
DQN to maintain simplicity. The main reason for
doing so was to try and directly compare the
effectiveness of PPO relative to Ape-X. This is
because PPO takes some parameters not used by
Ape-X, such as the “kl_coeff” parameter. Hence
using similar parameters is done in an attempt to
allow for a more direct comparison.
The key hyperparameters used are shown below:

 Custom PPO Custom APE-X

Framework PyTorch TensorFlow

Learning rate 0.0003 0.0003

Gamma 0.99 0.99

Hidden layers [512,512] [512,256]

LSTM usage No Yes

SGD minibatch size 256 Not specified

Table 1- Key hyperparameters used for the custom models

Training analysis
It should be noted that the goal of this assignment
was to implement new algorithms other than PPO,
therefore, the focus is on training, improving and
analysing the custom Ape-X DQN model rather than
the custom PPO model. Due to time and
computational constraints, the custom PPO model
was only trained for approximately 13 million
timesteps (relative to the 50 million spent on the
baseline models). Alternatively, the Custom Ape-X
model was trained for approximately 70 million
timesteps (data shown in Figures 1 and 2).

Figure 1- Training graph for the baseline models, showing the

average score reward per episode

Figure 2- Training graph for the custom PPO and APE-X models,

showing the average score reward per episode

As shown in the figures above, Baseline 3 achieves
the highest average score reward of all models,
with a value of approximately 0.45, whereas
baselines 1 and 2 both achieve between 0.3 and
0.35. As for the custom models, both custom PPO
and Ape-X are close to baseline 1, with an average
score reward of approximately 0.3. It should be
noted that the average score reward per episode is
highly correlated with the average wins per
episode. When viewing the Ape-X training graph, it
can be seen that Ape-X has an appreciable increase
in its score reward after approximately 30 million
timesteps. After this, the reward seems to stabilise,
with no such appreciable increase.

Testing analysis
After training the models, they are then evaluated

in the 3v3 game environment. This is done for a

total of 100 episodes, which alternate between the

controlled agent kicking-off and the opposition

kicking-off (i.e. 50 episodes for each team). Along

with the win rate, metrics such as the win, loss and

tie rate for each agent if they had their kick-off is

analysed. This is coupled with the number of slide

tackles the controlled agents make. Finally, each

model is analysed by the average number of

timesteps taken to win.

Figure 3- Win rate for each model (i.e. Average number of wins
per episode), along with the standard deviation

As shown in the figure above, the average values
and standard deviations show that the custom APE-
X algorithm implemented is competitive with the
baseline algorithms.
However, it is useful to analyse this winning trend
further by analysing another metric; game outcome
based on which team kicked off.

Figure 4- Rate of game outcome for model (Win/loss/opposition

win) when the controlled agent (left team) kicks-off

Figure 5- Rate of game outcome for model (Win/loss/opposition

win) when the opposition (right team) kicks-off

As seen, all of the agents’ wins come when it kicks
off the game, and none of them occurs when the
opposition kicks off (apart from a single with for
Baseline 2). Upon visualising the match videos, it is
evident this is due to the inability to win the ball
successfully when the opposition has possession.
The quickest method for an agent to regain

possession of the ball from the opposition is to
successfully execute a sliding tackle. Therefore, the
sliding tackles each agent makes are shown in
Figure 6. The PPO models are found to execute
several tackles when not in possession, especially
Baseline 1. However, an inspection of the videos
shows that an overwhelming majority simply miss
the ball, resulting in the agent not acquiring
possession successfully. If these slide tackles are
done on an agent, an overwhelming majority leads
to fouls, which ends the episode prematurely.
Almost none lead to possession regained fairly and
successfully. As for the Ape-X model, its drawback
is its reluctance to slide. The agent never engaged
in a slide tackle when not in possession, leaving it
up to only the goalkeeper to win back possession.
This severely affects its ability to overcome its
opponent when it does not have its kick-off.

Figure 6- Depiction of the average number of slide tackles the

agent executes per episode

Additionally, given that the agents only win when
they kick-off, a useful metric to analyse would be
the number of timesteps the agent takes to score.

Figure 7- Depiction of the average number of timesteps taken to
score when the agent wins after kicking-off (NOTE: outliers more
than three times greater than the average were not considered)

As seen from Figure 7, Baseline 1 takes the least
number of timesteps (on average) to score, closely
followed by Baseline 2 and the Ape-X model.
Additionally, Custom PPO and Baseline 3 take up to
an additional 50 timesteps to score when compared
to Baseline 1. Upon inspecting the videos, it is found
that the model for Baseline 1 tends to sprint directly

at the goal and take a shot early, whereas the agent
using Baseline 3’s model prefers to dribble patiently
and wait to take a shot. Upon closer inspection of
the parameters, this is thought to be a product
result of the inclusion of the LSTM (Long short-term
memory) parameter as part of the neural network.
Baseline 1, baseline 2 and Ape-X contain LSTM in
their neural networks model, whereas Baseline 3
and Custom PPO do not have them. LSTM is known
to help speed up the agent’s learning by exploiting
its network structure [7], which could be the reason
why Baselines 1 and 2 learned faster than Baseline
3 in the first 10 million timesteps (refer to Figure 1),
and also try to maximise reward capturing
efficiency by racing through the checkpoints and
scoring as early as possible. Generally, it seems that
Baseline 3’s approach is more suitable due to its
ability to dribble around an opponent, whereas
baseline 1 and Ape-X can end up sprinting directly
into opponents, losing possession, which explains
their inferior win rate relative to baseline 3.
However, Custom PPO was not as effective as
baseline 3 in terms of win rate because it tried to
run around the keeper rather than shoot in time,
making it lose the ball easily. Additionally, an
attempt was made to train Ape-X without LSTM,
but this did not prove to be successful as the agent
failed to surpass a mean win rate of 0 in training
after 20 million timesteps.

Challenges, pitfalls and

potential improvements
Reward shaping
Reward shaping was also tried with the Ape-X

model to try to improve the win rate when the

agent kicks off. After watching videos, it was

apparent that most successful goals were scored by

staying in a fairly central region and the final third

of the opponent’s half. Therefore, the agent was

rewarded for bringing and keeping the ball in this

region (ranging from +0.001 and +0.002 per

timestep). However, when implemented on Ape-X

DQN, this reduced the mean episodes won during

training, hence was not considered any further.

Upon realising that the Ape-X model was unable to

win the ball when the opponent kicked off, the

intention was to try and implement a reward-

shaping that would incentivise the agent to win the

ball back. Initially, positive rewards (of +0.05) were

provided for every slide tackle the agent executed

when not in possession of the ball. The intention

was to reward the agent only if the ball was won,

but implementing this code was challenging as it

was found that the agent may not own the ball

immediately after the tackle, hence tracking

whether the tackle was successful in winning

possession was difficult. However, in hindsight, I

would have trained Ape-X with rewards assigned

for only executing a tackle regardless of success,

just to get the APE-X agent to tackle as frequently

as the PPO agents, and test its success.

Feature Engineering (i.e. action masking)
As a potential improvement going forward, it would

have been worthwhile to implement “action

masking”. This would be useful in trying to improve

the APE-X agent’s ability to win games where the

opponent kicks off. Upon analysing the videos, it

was noticed that the agent was attempting actions

that were unnecessary when not in possession,

such as making high passes, long passes, short

passes and shots. Excluding these actions from the

agent’s availability in training could help in

speeding training by not allocating resources to

these irrelevant actions. Similarly, actions that are

irrelevant when the agent owns the ball can also be

removed, such as executing sliding tackles. This has

been done when implementing RL algorithms in

multi-agent environments with success [10].

Hyperparameters Tuning
The parameters used for the custom Ape-X model

are not tuned as thoroughly as the baseline PPO

models seem to be. Given that the goal of this

project was to implement another algorithm and

study its effectiveness, rather than tuning

hyperparameters, the latter was not done in detail.

However, if conducted, it may enhance the Ape-X

model such that it outperforms the PPO models.

Conclusion
PPO has been found to perform strongly (in terms

of the number of games won) when used in multi-

agent environments without a lot of

hyperparameter tuning and domain-specific

modifications. This has also been observed in

similar research in multi-agent environments [11].

Ape-X DQN was deployed to try and assess its

applicability in performing well in such a multi-

agent environment relative to PPO. Ape-X was able

to be competitive with the PPO (with a win rate of

30%) equivalent despite not being able to surpass

them (where the best PPO baseline models had win

rates between 35% to 45%). However, it performed

significantly better than other models designed for

multi-agent environments, e.g. SAC & IMPALA. Ape-

X’s success here may be due to the use of prioritised

experience replay and reward clipping [5].

The key drawback for all models evaluated was

their inability to win the ball from the opponent to

regain possession. However, potential

improvements in the form of reward shaping and

action masking were recommended.

Finally, the inclusion of LSTM in the neural network

structure of all models was found to make the agent

more eager to score quickly (taking fewer

timesteps) but did not improve its win rate.

References

[1] Google Research, Brain Team, “Google Research

Football: A Novel Reinforcement Learning

Environment,” Association for the Advancement

of Artificial, 2020.

[2] DeepMind, “EMERGENT COORDINATION

THROUGH COMPETITION,” in ICLR 2019, London,

2019.

[3] OpenAI, “Proximal Policy Optimization

Algorithms”.

[4] “DeepMind Technologies,” London, 2018.

[5] DeepMind, “DISTRIBUTED PRIORITIZED

EXPERIENCE REPLAY,” in ICLR, 2018.

[6] T. H. e. al., “Soft Actor-Critic Algorithms and

Applications,” 2019.

[7] DeepMind Technologies, “IMPALA: Scalable

Distributed Deep-RL with Importance Weighted

Actor-Learner Architectures,” London, 2018.

[8] K. K. D. S. e. a. Voldymr Mnih, “Playing Atari with

Deep Reinforcement Learning,” DeepMind, 2013.

[9] The Ray Team, “RLLIB Algorithms,” [Online].

Available: https://docs.ray.io/en/latest/rllib/rllib-

algorithms.html#dqn. [Accessed 23 07 2022].

[10] Tencent AI Lab, Tencent Timi Studio, “Mastering

Complex Control in MOBA Games with Deep

Reinforcement Learning,” Association for the

Advancement of Artificial Intelligence, 2020.

[11] A. V. e. a. Chao Yu, “The Surprising Effectiveness

of PPO in Cooperative, Multi-Agent Games,” 2021.

