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Abstract- The goal of this project is to develop a 
multi-agent reinforcement learning algorithm for 
Google Research’s football environment. Three 
baseline teams have been provided, and a variety 
of algorithms are tested to gauge their ability to 
improve on certain aspects of the baseline teams. 
It was found that the Ape-X DQN and PPO 
algorithm, implemented using Ray’s RLlib library, 
were most suitable for best returns. The Ape-X 
algorithm in particular is analysed and compared 
to the PPO baselines, with suggestions made on 
how its results could be improved upon. 

Introduction 
The Google Research Football Environment is a 
reinforcement learning (RL) environment where 
agents are trained to play football (a.k.a. soccer) in 
a physics-based 3D simulator and is designed to 
provide support for multi-agent RL experiments [1]. 
Published research in this environment investigates 
the use of reinforcement learning algorithms such 
as IMPALA, PPO and APE-X DQN [1]. Additionally, 
similar environments exist that utilise a multi-agent 
approach, such as DeepMind’s MuJoCo [2]. 

Problem Definition 
For this assignment, three baselines teams have 
been provided, each trained using the Proximal 
Policy Optimisation (PPO) Algorithm using Ray’s 
RLlib library [3]. However, each one has been 
trained using a different set of parameters.  The 
goal of this assignment is to implement another 
algorithm/model that improves upon certain 
aspects of the baseline teams. 
 
The environment created is a 3v3 scaled-down 
version of the original 11v11 implementation. The 
agent implemented will take control of two outfield 
players in the left team (attacking to the right), 
where the goalkeeper is automatically controlled. 
The opponent AI controls all three players in the 
right team (attacking to the left). 
 
The observation space for this environment is high-
dimensional and continuous and represented as a 
43-dimensional vector. Additionally, the action 
space is a discrete set of 19 actions. The reward 
function is split into two categories; the score 
reward and the checkpoint reward. If a team scores 
a goal, it receives a +1 reward, while the opposition 
receives a -1 reward. Additionally, up to an 

additional 10 checkpoint rewards are provided if a 
player in possession crosses distance checkpoints, 
receiving a +0.1 reward for each checkpoint 
crossed. The score and checkpoint rewards 
combined are the “episode reward”. 

Chosen Solution Strategies 
The first strategy is to trial a variety of algorithms to 
discover which one has the greatest potential to 
beat the baseline. Given the computational and 
time limitations, the algorithm had to meet the 
following two criteria to be used for 
evaluation/analysis later on. They are referred to as 
the “target training criteria”, and use the following 
custom metrics: 

• win_percentage_episode_max- All baselines 
were able to return a value of 1 for this metric 
after 5 hours of wall-clock time (excluding the 
rare outliers). Therefore, If the new model was 
unable to achieve this trend, it was not 
considered further. 

•  “win_episode_percentage_mean” & “episode 
_reward_max”- these two are used in tandem. 
For certain models, their average percentage of 
episodes won plateaus, which may give an 
impression that they’ve stopped learning, 
however, this is not the case (as shown by 
Baseline 3 in Figure 1). If this behaviour is 
noticed for longer than 5 hours of wall-clock 
time, then  “episode _reward_max”  is analysed. 
If the agent is not scoring close to the max of 4.0 
(i.e. 3.8 or higher), that means it may be 
struggling to acquire its checkpoint rewards and 
score, hence is not considered for evaluation. 

This approach may be considered empirical and 
therefore, not necessarily definitive. This is because 
it is likely for a model to take several hours to 
perform poorly at the metrics above but then learn 
rapidly to outperform expectations (similar to 
baseline 3). However, it is difficult to predict this in 
training, hence the aforementioned time limits are 
imposed in the “target training criteria”. 
Furthermore, the wall-clock hours taken in training 
are used as a threshold instead of timesteps taken 
in the assessment because the algorithms have 
different training rates (e.g. Ape-X can complete 
over 2 million timesteps in an hour, whereas PPO 
would complete 650,000).  
 
As previously mentioned, Google’s Brain team 
analysed three algorithms, PPO (Proximal Policy 
Optimisation) [3], IMPALA (Importance-Weighted 



Actor Learner Architecture) [4] and Ape-X DQN 
(Distributed Prioritized Experience Replay) [5]. 
These three algorithms were selected for this 
analysis, along with SAC (Soft Actor-Critic) [6], 
deployed using Ray’s RLlib package, and were 
trained and analysed based on the two “target 
training criteria”.  

Algorithms/ Models attempted 
SAC (Soft Actor-Critic) 
The algorithm consists of an actor-critic 
architecture (similar to DQN) with separate policy 
and value function networks. It also has an off-
policy formulation that enables the reuse of 
previous data, and entropy maximisation to 
encourage stability and exploration [6].  
SAC was unable to pass the two target training 
criteria since it failed to consistently win after 5 
hours. Therefore, it was not evaluated any further. 
 

IMPALA 

This is a highly scalable algorithm that decouples 
the acting and learning elements. A central learner 
is provided with trajectories of experience from 
individual workers. The RLlib implementation uses 
DeepMind’s reference V-trace code [7]. IMPALA, 
similar to SAC, was also unable to pass the target 
training criteria, and hence was not evaluated 
further. 
 

PPO 
Proximal Policy Optimization is an online policy 
gradient algorithm that alternates between 
sampling data through interaction with the 
environment and optimizing a “surrogate” 
objective function using stochastic gradient ascent 
[3]. This is the algorithm chosen for all baselines and 
lends itself well for use in multi-agent 
environments. As shown by the baseline values, 
PPO passed both the target training metrics and a 
custom model is considered for further assessment. 
 

APEX-DQN 
DQNs use a multi-layer perceptron, rather than a Q-
table, to estimate the Q-values as state-action pairs 
for the given state [8]. However, DQN showed a 
poor training rate and was unable to pass the target 
training criteria. Given that the number of workers 
could not be increased to scale for the 
environment, Ape-X DQN was selected instead. 
Additionally, Ape-X also allows for faster training at 
a comparable timestep efficiency [9]. In particular, 
Ape-X extends the prioritized experience replay 
memory to the distributed setting to enable higher 

scalability, done via multiple actors. The learner 
then samples from this memory, updating the 
network and the priorities of the experience.  

Experiments and Analysis 
Initial Parameters 
Certain parameters remained constant from their 
baseline implementations to all the custom models 
implement. These include: 

• “rollout_fragment_length”- set to 100. 

• “batch_mode”- set to “truncate_episodes”, so 
each call to “sample()” will return a batch of 
length  “rollout_fragment_length” at most. 

• “model”- all are set to “fcnet”, and consist of 2 
hidden layers. 

• “train_batch_size”- set to 2800 
 
Custom models were created using PPO and Ape-X 
DQN to maintain simplicity. The main reason for 
doing so was to try and directly compare the 
effectiveness of PPO relative to Ape-X. This is 
because PPO takes some parameters not used by 
Ape-X, such as the “kl_coeff” parameter. Hence 
using similar parameters is done in an attempt to 
allow for a more direct comparison.  
The key hyperparameters used are shown below: 
 

 Custom PPO Custom APE-X 

Framework PyTorch TensorFlow 

Learning rate 0.0003 0.0003 

Gamma 0.99 0.99 

Hidden layers [512,512] [512,256] 

LSTM usage No Yes 

SGD minibatch size 256 Not specified 

Table 1- Key hyperparameters used for the custom models 

Training analysis 
It should be noted that the goal of this assignment 
was to implement new algorithms other than PPO, 
therefore, the focus is on training, improving and 
analysing the custom Ape-X DQN model rather than 
the custom PPO model. Due to time and 
computational constraints, the custom PPO model 
was only trained for approximately  13 million 
timesteps (relative to the 50 million spent on the 
baseline models). Alternatively, the Custom Ape-X 
model was trained for approximately 70 million 
timesteps (data shown in Figures 1 and 2).  
 



 
Figure 1- Training graph for the baseline models, showing the 

average score reward per episode 

 
Figure 2- Training graph for the custom PPO and APE-X models, 

showing the average score reward per episode 

As shown in the figures above, Baseline 3 achieves 
the highest average score reward of all models, 
with a value of approximately 0.45, whereas 
baselines 1 and 2 both achieve between 0.3 and 
0.35. As for the custom models, both custom PPO 
and Ape-X are close to baseline 1, with an average 
score reward of approximately 0.3. It should be 
noted that the average score reward per episode is 
highly correlated with the average wins per 
episode. When viewing the Ape-X training graph, it 
can be seen that Ape-X has an appreciable increase 
in its score reward after approximately 30 million 
timesteps. After this, the reward seems to stabilise, 
with no such appreciable increase. 
 

Testing analysis 
After training the models, they are then evaluated 

in the  3v3 game environment. This is done for a 

total of 100 episodes, which alternate between the 

controlled agent kicking-off and the opposition 

kicking-off (i.e. 50 episodes for each team). Along 

with the win rate, metrics such as the win, loss and 

tie rate for each agent if they had their kick-off is 

analysed. This is coupled with the number of slide 

tackles the controlled agents make. Finally, each 

model is analysed by the average number of 

timesteps taken to win. 

 

Figure 3- Win rate for each model (i.e. Average number of wins 
per episode), along with the standard deviation 

As shown in the figure above, the average values 
and standard deviations show that the custom APE-
X algorithm implemented is competitive with the 
baseline algorithms.  
However, it is useful to analyse this winning trend 
further by analysing another metric; game outcome 
based on which team kicked off. 
 

 
Figure 4- Rate of game outcome for model (Win/loss/opposition 

win) when the controlled agent (left team) kicks-off 

 
Figure 5- Rate of game outcome for model (Win/loss/opposition 

win) when the opposition (right team) kicks-off 

As seen, all of the agents’ wins come when it kicks 
off the game, and none of them occurs when the 
opposition kicks off (apart from a single with for 
Baseline 2). Upon visualising the match videos, it is 
evident this is due to the inability to win the ball 
successfully when the opposition has possession. 
The quickest method for an agent to regain 



possession of the ball from the opposition is to 
successfully execute a sliding tackle. Therefore, the 
sliding tackles each agent makes are shown in 
Figure 6. The PPO models are found to execute 
several tackles when not in possession, especially 
Baseline 1. However, an inspection of the videos 
shows that an overwhelming majority simply miss 
the ball, resulting in the agent not acquiring 
possession successfully. If these slide tackles are 
done on an agent, an overwhelming majority leads 
to fouls, which ends the episode prematurely. 
Almost none lead to possession regained fairly and 
successfully. As for the Ape-X model, its drawback 
is its reluctance to slide. The agent never engaged 
in a slide tackle when not in possession, leaving it 
up to only the goalkeeper to win back possession. 
This severely affects its ability to overcome its 
opponent when it does not have its kick-off.  
 

 
Figure 6- Depiction of the average number of slide tackles the 

agent executes per episode 

Additionally, given that the agents only win when 
they kick-off, a useful metric to analyse would be 
the number of timesteps the agent takes to score.  
 

 
Figure 7- Depiction of the average number of timesteps taken to 
score when the agent wins after kicking-off (NOTE: outliers more 
than three times greater than the average were not considered) 

As seen from Figure 7, Baseline 1 takes the least 
number of timesteps (on average) to score, closely 
followed by Baseline 2 and the Ape-X model. 
Additionally, Custom PPO and Baseline 3 take up to 
an additional 50 timesteps to score when compared 
to Baseline 1. Upon inspecting the videos, it is found 
that the model for Baseline 1 tends to sprint directly 

at the goal and take a shot early, whereas the agent 
using Baseline 3’s model prefers to dribble patiently 
and wait to take a shot. Upon closer inspection of 
the parameters, this is thought to be a product 
result of the inclusion of the LSTM (Long short-term 
memory)  parameter as part of the neural network. 
Baseline 1, baseline 2 and Ape-X contain LSTM in 
their neural networks model, whereas  Baseline 3 
and Custom PPO do not have them. LSTM is known 
to help speed up the agent’s learning by exploiting 
its network structure [7], which could be the reason 
why Baselines 1 and 2 learned faster than Baseline 
3 in the first 10 million timesteps (refer to Figure 1), 
and also try to maximise reward capturing 
efficiency by racing through the checkpoints and 
scoring as early as possible.  Generally, it seems that 
Baseline 3’s approach is more suitable due to its 
ability to dribble around an opponent, whereas 
baseline 1 and Ape-X can end up sprinting directly 
into opponents, losing possession, which explains 
their inferior win rate relative to baseline 3. 
However, Custom PPO was not as effective as 
baseline 3 in terms of win rate because it tried to 
run around the keeper rather than shoot in time, 
making it lose the ball easily. Additionally, an 
attempt was made to train Ape-X without LSTM, 
but this did not prove to be successful as the agent 
failed to surpass a mean win rate of 0 in training 
after 20 million timesteps.   

Challenges, pitfalls and 

potential improvements 
Reward shaping 
Reward shaping was also tried with the Ape-X 

model to try to improve the win rate when the 

agent kicks off. After watching videos, it was 

apparent that most successful goals were scored by 

staying in a fairly central region and the final third 

of the opponent’s half. Therefore, the agent was 

rewarded for bringing and keeping the ball in this 

region (ranging from +0.001 and +0.002 per 

timestep). However, when implemented on Ape-X 

DQN, this reduced the mean episodes won during 

training, hence was not considered any further. 

Upon realising that the Ape-X model was unable to 

win the ball when the opponent kicked off, the 

intention was to try and implement a reward-

shaping that would incentivise the agent to win the 

ball back. Initially, positive rewards (of +0.05) were 

provided for every slide tackle the agent executed 

when not in possession of the ball. The intention 

was to reward the agent only if the ball was won, 

but implementing this code was challenging as it 



was found that the agent may not own the ball 

immediately after the tackle, hence tracking 

whether the tackle was successful in winning 

possession was difficult. However, in hindsight, I 

would have trained Ape-X with rewards assigned 

for only executing a tackle regardless of success, 

just to get the APE-X agent to tackle as frequently 

as the PPO agents, and test its success.  

Feature Engineering (i.e. action masking) 
As a potential improvement going forward, it would 

have been worthwhile to implement “action 

masking”. This would be useful in trying to improve 

the APE-X agent’s ability to win games where the 

opponent kicks off. Upon analysing the videos, it 

was noticed that the agent was attempting actions 

that were unnecessary when not in possession, 

such as making high passes, long passes, short 

passes and shots. Excluding these actions from the 

agent’s availability in training could help in 

speeding training by not allocating resources to 

these irrelevant actions. Similarly, actions that are 

irrelevant when the agent owns the ball can also be 

removed, such as executing sliding tackles. This has 

been done when implementing RL algorithms in 

multi-agent environments with success [10]. 

Hyperparameters Tuning 
The parameters used for the custom Ape-X model 

are not tuned as thoroughly as the baseline PPO 

models seem to be. Given that the goal of this 

project was to implement another algorithm and 

study its effectiveness, rather than tuning 

hyperparameters, the latter was not done in detail. 

However, if conducted, it may enhance the Ape-X 

model such that it outperforms the PPO models. 

Conclusion 
PPO has been found to perform strongly (in terms 

of the number of games won) when used in multi-

agent environments without a lot of 

hyperparameter tuning and domain-specific 

modifications. This has also been observed in 

similar research in multi-agent environments [11].  

Ape-X DQN was deployed to try and assess its 

applicability in performing well in such a multi-

agent environment relative to PPO. Ape-X was able 

to be competitive with the PPO (with a win rate of 

30%) equivalent despite not being able to surpass 

them (where the best PPO baseline models had win 

rates between 35% to 45%). However, it performed 

significantly better than other models designed for 

multi-agent environments, e.g. SAC & IMPALA. Ape-

X’s success here may be due to the use of prioritised 

experience replay and reward clipping [5].  

The key drawback for all models evaluated was 

their inability to win the ball from the opponent to 

regain possession. However, potential 

improvements in the form of reward shaping and 

action masking were recommended.  

Finally, the inclusion of LSTM in the neural network 

structure of all models was found to make the agent 

more eager to score quickly (taking fewer 

timesteps) but did not improve its win rate.  
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